If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+20t-20=0
a = 5; b = 20; c = -20;
Δ = b2-4ac
Δ = 202-4·5·(-20)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{2}}{2*5}=\frac{-20-20\sqrt{2}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{2}}{2*5}=\frac{-20+20\sqrt{2}}{10} $
| 28+5d=12 | | 6x-1^2=8 | | 15x^2+38x-136=0 | | 65=x+74 | | -35=7/8x | | -4(2-5x)=12 | | 3(4w+4)/5=-11 | | 6-2a-7a=-7a-6-4a | | 1.2(x-2)=4(x+2) | | 4w-6=90 | | -3w/4=-9 | | 1/3(2m-12)=2m/5 | | 2x•x=24 | | 0.9/3=x/1000 | | 20x+15=0 | | 2(4x-3)/5=x+10 | | 5(3x+5)-4x=-8 | | -3+k=k-3 | | -3+k=k=3 | | 4x+7-3x=18 | | 8a-2(8-a)=6a-20 | | m+2m-6=-12+22m | | 2n+6/3=2(4n-10) | | 4(2b-3)=2(4b+6 | | 6(e-4)+1=3e+7 | | 9(2a−3)= | | (n-2)=90 | | 5(x+4)+x=3(x–1) | | a/3+3=8 | | 4x+5(.25)=12.00 | | 8r-5r-2=19 | | 8d+7(d+2)=-1 |